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1.0 Introduction

1,1 IRSS System Overview

Under the Intelligent Robotics System Study (IRSS) contract, a generalized robotic
control architecture has been developed for use with the ProtoFlight Manipulator Arm

(PFMA) which resides at Marshall Space Flight Center (MSFC) in Huntsville, Alabama.
Based upon the NASREM system design concept, the controller built for the PFMA

provides localized position based force control, teleoperation and advanced path
recording and playback capabilities. Various hand controllers can be used with the

system in conjunction with a synthetic time delay capability to provide a realistic test

bed for typical satellite servicing tasks.

The PFMA has six computer controllable degrees of freedom (DOF) plus a seventh

manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism.
Because the PFMA was not developed to operate in a gravity field, but rather in space,
it is counter balanced at the shoulder, elbow and wrist and a spring counterbalance

has been added near the wrist to provide additional support. Built with long slender

intra-joint linkages, the PFMA has a workspace nearly 2 meters deep and possesses
sufficient dexterity to perform numerous satellite servicing tasks. The manipulator is
arranged in a shoulder-yaw, pitch, elbow-pitch, and wrist-pitch, yaw, roll configuration,

with an indexable shoulder roll joint.

Joints on the PFMA are driven via 7 pulse width modulated amplifiers(6 DOF + end

effector). Resolvers and tachometers are used to measure relative joint positions and
velocities. Motor drive currents are controlled via analog inputs to joint amplifier cards,

and analog outputs are provided that feedback actual motor currents to the PFMA
controller. Currently, there are two hand controllers for the PFMA: a compact rate

(CAE) hand controller and a larger hand controller developed by Seargent
Laboratories which has force feedback capabilities. A Lord Force/Torque Sensor

mounted to the manipulator near its end effector is used to implement various force-
based control schemes and eventually force reflection.

Digital control of the PFMA is implemented using a variety of single board

computers developed by Heurikon Corporation and other manufacturers. The digital
hardware architecture is comprised of five Heurikon V2F processor cards (68020

based) in a single 32 bit VME chassis connected to a second 24 bit VME chassis via a
shared memory card. The first chassis (the computational chassis) performs all

controls computations and operates the user interface. The second chassis contains
all the electronics that interface directly to the PFMA and hand controllers. This

chassis uses a Motorola MVME 104 processor card (68010 based) to perform all



system data acquisition. Because of its function, this second chassis is called the
Input/Output (I/0) chassis.

1.2 Scope of Phase IV Effort

There were two major activities under the IRSS phase IV contract:

1 ) Enhancement of the PFMA control system software functionality;

2) Evaluation of operating modes via a teleoperation performance study.

These activities are described in sections 2 and 3 respectively.
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2.0 Control System Software

The following sections describe updates and enhancements made to the IRSS

control software as part of the IRSS phase IV effort. Upgrades and modifications

performed for this phase of the contract can be grouped into three principal areas.
These categories are: Enhanced Operator Interface, Control System Upgrades and

System Simulation Capabilities. Each of these areas may be further subdivided into a
list of specific tasks which were performed to accomplish each.

• Integration of the VPL data glove hand controller into the robot control

system.

• Integration of the Fluke 1031 touchscreens into the user interface.

• Real-time kinematic simulation of the robotic manipulator using the Evans &

Sutherland PS-390 interactive graphics computer.

• Alternative PFMA joint reference generators were implemented.

° Enhanced data recording capabilities were integrated into the PFMA robot
controller.

• Software/hardware related problems were identified and addressed.

• Analysis, design and preliminary implementation of a limited bandwidth
bidirectional communications link between a remote robotic servicer and a

ground based user interface were performed.

• Off-line system simulation capabilities were upgraded to support off-site

update and debug of IRSS system software.

2.1 Enhanced Operator Interface

2.1.1 VPL Data Glove Integration.

A spandex glove instrumented with a variety of sensors was integrated into the

IRSS robot controller for use as a teleoperation input device. Due to the unique nature
of this user input mechanism, it was anticipated that much could be learned as the

glove was used to move the robot through its work environment performing various

tasks. What makes the data glove so unique is that it has a much larger work volume
than almost any mechanical hand controller, not to mention that it also possesses a

very low inertia (a rather uncommon feature among hand controllers). This glove,
developed and marketed by VPL Corporation, uses three separate types of sensors to

determine a variety of conditions pertaining to the users hand position. A Polhemus

electromagnetic emitter/detector pair uses a multiplexed magnetic field to determine
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relative position and orientation of the glove within the hand controller work envelope.
This is used to control gross robot position and 6d_entatio'n changes. Sixteen fiber

optic flex sensors are mounted on the glove and are used to determine relative flexure

of knuckles and the position of the thumb. This is used for controlling the end effector

operations and virtual deadman switch (to perform ratcheting) for the robot. A final

sensor set measures the relative distance between the tip of the index finger and the

thumb (this sensor is not presently in use).

The VPL data glove is tied to the IRSS control computer via a 9600 baud, RS-232

serial link passing data to a MVME-410 card within the system VME I/O chassis (see

the IRSS phase II final report 1 for a discussion of this chassis). Currently, six integer

values representing glove Cartesian positions and orientation, and ten flex sensor

values (2 for each finger and the thumb) are being returned to the I/O computer at a 30

Hz rate. Orientations are input to the chassis in a yaw-pitch-roll format. Though while

the I/O chassis is operating data acquisition from the data glove is constantly

occurring, this data is only processed when data glove teleoperation is active. The

resolution of incoming data is sufficient to permit the teleoperation of smooth robot

slewing motions throughout the entire manipulator workspace.

Using software developed for the data glove_ a user defined virtual box is oriented

around and located behind the glove's Polhemus emitter. With the glove inside this

virtual box, when the thumb is curled tightly toward the palm, the PFMA can be

teleoperated in a variety of modes including rate, position, and "hawk" (translations

only mode). High and low gain settings for these various modes are correlated directly

to middle and index finger positions as transduced by the glove's fiber optic flex

sensors. High gain is achieved when both fingers are extended, low gain when only

the index finger is extended. Flexing all fingers back commands the end effector jaws

to open while curling all fingers toward the palm affects closure. Any glove gestures

made when the glove is outside of the virtual box about the emitter are ignored by

teleoperation algorithms. An interactive parameters menu permits the user to adjust

various gain values and dictate thumb-deadman and finger-end effector open/close

operational thresholds. Raw data coming from the data glove can be seen using

hardware diagnostics provided in the IRSS software.

Preliminary exercises with the data glove appear to demonstrate that it is well

suited for the control of robotic manipulators like the PFMA. Although the RS-232

serial link between the data glove and the I/O computer functioned very reliably, this

input device was shown t0 _have other rather troub!in_ id!0syncrasies with regards to

the magnetic fields which it generates. The most promiqent h=a_dto do with the
Polhemus emitter used to determine the glove's orientation and position. When this

emitter was placedci0se-to metal objects (e.g.meta---i _desks and chairs) warping of its

emission field caused the hand controller to behave abnormally along certain axis. In

1Intelligent Robotic Systems Study (IRSS): Phase II Final Report, Martin Marietta, MCR-89-559,

contract NAS8-36431, May 1990.
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addition, it was determined that operating the VPL glove in close proximity to the
system I/O chassis appears to induce electrical noise onto the VME backplane causing
failure of system bus read and write cycles; a very serious problem. To optimize the

operation of the data glove more effort is needed to calibrate operational axial gains
for use in all modes that the controller can function in. This is necessary to guarantee

the safety of the PFMA and fragile task panels.

A preliminary application of neural networks to help classify gestures and

commands was performed. Although algorithms for their use were not integrated into
the IRSS controller, a small amount of data was collected and used with a simple

network. The results were very promising. Rapid convergence during training and

distinctive recognition of gestures was achieved for all gestures in each of four data
sets collected.

2.1.2 Fluke 1031 Touch Screen Integration

The new human-computer (HCI) system and associated screens allow the operator
to easily operate the PFMA. The hierarchy for the new HCI system is shown in Figure

2-1. The new HCI design provides an easy to use, hierarchical operator interface. In

the Help, Demo, and Test hierarchies, the operator is provided with prompts to guide
him/her through the hierarchies. These hierarchies provide the operator with two

methods of command entrymtouchscreen and keyboard input. The Program hierarchy

screens do not provide prompts to guide the operator though the hierarchy and
provides primarily a keyboard entry interface. The Program hierarchy provides less

guidance to accommodate the skill level of experienced programmers who will be
using this hierarchy of screens.

This HCI design was implemented by adding two Fluke 1031 touch terminal

monitors to the previous IRSS operator interface. Using graphics characters and
resident highlighting and font capabilities present in these terminals a simplified user

interface was added to the IRSS robot control system. Using these terminals many
macro operations requiring many keystrokes from the engineering console were

consolidated under a single touch key.

The two touch terminals are physically connected to the Heurikon real-time control

computer via 9600 baud RS-232 serial !inks (through the XYcom quad serial port

card). The program which operates the user interface routinely queries each of the
touch screens to determine if the user has selected an operation through either touch

or by having typed a letter at the touch screen keyboard. Operations coming from the
touch screens behave just as they would if they came through the engineering console

terminal. Functionality is divided between the two touch screens with the first

operating as the sole operations command screen and the second providing a system
monitor and display function.
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Figure 2-1. Touch Screen Hierarchy

The system command touch terminal provides four primary menus used to control
the PFMA in a number of modes and using various hand controllers. Additional

menus are provided.......... that a low the _:__user....to move from menu__ to menu. Stubs for future

operational menu integration have also been provided. Typically, operational menus

provide selection of impedance parameters from a choice of four options, selection of
hand controller operational modes and gains and execution of one of up to four

autonomous path primitives. Touch menus for both the VPL data glove and the CAE

hand controller are prov!ded. One of the touch screens is designed specifically for the
analog like calibration of impedance paramete_ using either the CAE or the VPL data

glove hand controller. A topological map of the touch screen menu tree is provided via

a t0_ch keyc=ommon t-0aTmost eVel_ scree_i. -: -

The system monitor and display touch screen allows the user direct visibility of

system variables associated with each of the functional layers of the IRSS control

system (for a definition of these layers see the IRSS phase II final report). These

displays are updated at near real time rates to provide accurate internal system
information. Help information is available at the touch of a key. This real-time
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monitoring function can also bedisabled via an active touch key. With this monitoring
and display function disabled operator input bandwidth via the engineers console is

improved.

The entire Fluke touch screen interface is built upon a standard touch screen
library designed to operate the touch terminals and design custom menus with a

minimum of effort. Standard utilities for the display of real time menus were adapted

for use with these terminals reducing the overall amount of code that had to be
developed. This interface library should be portable to other hardware systems (e.g.

PCs or VAXs) so that almost any system with a C compiler, the support library and a

serial port can function as a host. This support library provides primitive functions such

as complete touch key definitions, line drawing and text processing.

2.1.3 Real-time Kinematic Simulation of the PFMA

With a variety of mechanical limitations which the PFMA has, the robot controller

can sometimes appears to be malfunctioning. These physical limitations include
stiction in both the joint motor drive trains and the spring counterbalance supporting
the robot's wrist, as well as limitations on the maximum amount of torque that the

PFMA's joints can generate. This manifests itself in teleoperation, for instance, when

commanded motions from a hand controller appear to have to no effect on the robots

position. To enhance the operator interface, help understand some of the physical
limitations of the mechanical system and provide the capabilities to playback

autonomous path primitives before they are executed, a graphical kinematic
simulation of the PFMA was developed. In this simulation a wire-frame image of the

PFMA is displayed indicating the commanded positions of each of the robot's joints

and end effector. This graphics display can be scaled, and the observation point from
which the simulation is viewed can be modified using several dials provided with the

graphics computer, an Evans & Sutherland PS-390 graphics workstation.

This simulation is driven via an RS-232 link connecting the Heurikon computational

chassis (using the XYcom quad serial port card) to the serial input port of the E&S PS-
390. After the preliminary wire frame model of the PFMA is downloaded to the PS-

390, the computer is periodically passed the commanded joint angles of the PFMA.

This provides real-time animation of the robot's motion. This simulation can be driven
using either teleoperation (CAE or Data Glove hand controller) or autonomous path

primitives recorded by the user. The display also reflects changes in the robot's

commanded position as dictated by forces applied to the end effector that are
processed by the impedance control subsystem. This functionality provides for

operation for the PFMA's digital control system when either the analog-I/O system is in
a state of maintenance and repair or when "safe" debugging of new controller

algorithms is necessary. The ability to execute autonomous task primitive motions in

this manner ensures that when these segments are executed using the PFMA they will
complete their intended operation.
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2.2 Control System Upgrades

2.2.1 Robot Servo Command Input Upgrades

During the IRSS phase II effort joint performance data was collected for the PFMA

and analyzed in an effort to improve joint disturbance response characteristics. The

difficulty with which this was accomplished illustrated the need to provide utilities

within the IRSS robot controller to manually inject various wave forms directly into the

joint controllers of the robot for the purpose of analysis and diagnostics. During IRSS

phase IV this capability was implemented providing the ability to inject sine and
square wave functions into the forward path of each of the robot's independent joint

controllers. Using this facility and a user defined configuration menu, the amplitude,

frequency and relative phase of these references for each of the robot's joints is user

configurable.

2.2.2 Data Recording and Analysis Upgrades

To perform human factors experiments during phase/Vofthe IRSS contract the

addition of a data recording capability was implemented and integrated into the robot

controller. Because important feedback information !s distributed throughout the robot

control system, fundamental components of the recording facilities must function as a

unit across multiple processors each with the ability to perform independent data

recording. To meet these requirements, a set of software modules was built around a

common data structure and set of low level software utilities, each capable of

functioning independently on an isolated processing node (Figure 2-2).

_e ec°rding

Header
Real-_me Data

cord

Mass Storage

_E&S PS-390

Engineering Console

!-i

Figure 2-2. Distributed Data Recording and Display
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The data recording capability has several primary components; raw recording, raw

display, transfer to mass storage and graphics display for analysis purposes. The raw
data recording facility permits the user to select data to be recorded, its recording rate,
its recording mode and the amount of memory used to record the particular data item.
A selection from over 15 different data items is currently provided. Start, stop and reset

of data recording is controlled from the main engineering console terminal. Using the

data display utility the user can scroll through recorded data, stopping it as necessary
to examine individual items. To quickly examine the recorded data a graphics support

system is provided that scales and passed the recorded data (via RS-232) to the

Evans & Sutherland PS-390 graphics computer. On the PS-390 display a plot is
produced complete with grid marks, title, axis labels and a legend in full color. Up to

five overlaid plots can be produced making comparison of system performances fast
and efficient. The user has complete control over nearly all aspects of the plot

produced. Permanent storage of recorded data is accomplished by translating binary
values to ASCII and then saving them in user defined files on the Heurikon hard disk.

From this disk they can be transferred to other remote systems using either streaming
tape or floppy. Currently, there is approximately 400K of memory available for use

with data recording. Filling all of this memory with data produces an output disk file
which when saved is nearly 1 megabyte in length.

2.2.3 Software and Hardware Problems Addressed

In the course of performing phase IV work a variety of software problems were
identified and corrected. These included problems associated with sometimes

unreliable power-up and down of the system and structure of the system world model.

To provide support for the serial interface to the VPL data glove an additional MVME-
410 quad serial card was added to the I/O chassis. Due to the large amount of serial

data processed by the I/O computer, this addition precipitated the need to convert I/O
chassis hardware and software operating the serial interface from a poling method to

an interrupt driven scheme. This upgrade not only incorporated the data glove hand

controller but also improved the reliability and speed of the Lord Force�Torque sensor
interface. Documentation of existing and newly developed system software was

improved to help clarify system operations and data flows.

Despite the fact gains in system reliability have been made during the phase IV
effort, there do remain several significant problems with the system. The first of these

problems has to do with the interaction of the system I/O chassis and the Polhemus

emitter functioning with the VPL data glove. Because of electrical noise induced by
fluctuating magnetic fields coming from the emitter, the I/O chassis will occasionally

receive spurious signals while attempting to access the VME bus. This typically results
in a failure indication, "crashing" the system. Improved shielding of the I/O chassis

backplane would be the most obvious solution to this problem. A second problem is

that one of the Heurikon V2F real-time computational processor cards occasionally

fails indicating a memory parity error. The suspected cause in this case is that the

9



VRTX kernel software which performs multi- taskiog on the board was not saving and
restoring floating point coprocessor registers when appropriate. A simple upgrade of
VRTX software from version V20 to V32 should eliminate this difficulty. With these

problems data collection during the experimental phase of the phase IV effort was
hampered, requiring an excessive amount of individual data file processing to occur

before the information could be analyzed.

2.3 System Simulation Capabilities

2.3.1 Simulation of Limited Bandwidth Communications Link

The design and preliminary implementation of a limited bandwidth, bidirectional
data link was accomplished during phase IV of the IRSS contract. The objective of this

task was to examine the effects of extremely limited data communications rates upon

teleoperation, system safety and system controllability of a robotic system whose
operator and user interface are separated from the real-time control system and robot.

In total, it was anticipated that this system would emulate an Earth base control station
for an on-orbit remote manipulator such as the Orbital Maneuvering Vehicle (OMV),

the Flight Robotic Servicer (FTS), or the Satellite Servicing System.

The bandwidths selected for this system were roughly equivalent to that which

were expected for the proposed OMV. The uplink data rate from the control station is
designed to be user configurable ranging from 230 to 810 bits/second. Uplink data
packet sizes range from 23-27 bits/packet with transmission rates of between 10 and

30 packets/second as selected by the user. In the preliminary design, the downlink

bandwidth was significantly greater than that of the uplink, ranging from 2300 to 6900

bits/second with packet sizes of 230 bits/packet at rates from between 10 to 30
packets/second. Time delays for packets are user configurable ranging from 0 to 5
seconds each direction.

A strategic method for optimizing system data integrity between the various

components of the distributed control system was developed. The goals of the

methodology developed was to optimizethe datafl0w through the constrained link by
eliminating the transfer of redundant information and providing a criticality prioritized

scheduling framework for the transmission of system data. On the uplink side, the

ability to perform robust teleoperation of themanipulator across the data link was
desired. A block diagram detailing the organization of this system is shown in Figure

2-3. A description of the major components found in the system is provided below.

2.3.1.1 Delay Blocks

These blocks emulate a realistic time delay anticipated between the Earth based
ground station and a remote robotic servicer. Delays are user selectable and can

range from 0 to 5 seconds.
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Figure 2-3. Reduced Bandwidth Communications Link Simulation

2.3.1.2 World Models

Within this system there are three separate world model entities. The first is the
Remote Robot World Model. This world model is the true informational data base from

which the real-time operations of the robot occurs. The system real-time

computational and I/O processors update this world model causing tasking data to flow
in the remote controller. The second world model is the Downlink World Model

maintained by the monitor and compare function on the remote robot control system.

The monitor and compare subsystem compares data within the Remote Robot World

Model (the true world model) to this local model and generates a list of discrepancies

between the two. The Downlink World Model is intended to be a duplicate of what is

the third world model, namely, the Ground Based World Model. The Ground Based

World Model is the only record that the remote operator interface has for determining

the operational state of the remote manipulator servicing system.

2.3.1.3 Remote Monitor & Compare

The remote monitor and compare function is used to help the Ground Base World

Model reflect as accurately as possible the state of the Remote Robot World Model.

This function is constantly comparing its local world model with the Remote Robot

World Model identifying items which differ. Differences between the two indicate that
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the Ground Based World Model does not accurateJy reflect the true state of the Remote
Robot World Model and so transmission of this discrepancy is necessary. This

function helps ensure that packet bandwidth is not wasted transferring data to the
ground station that currently reflects the existing state of the remote world model.
Output from this function is a list of world model data items requiring update on the
Ground Based World Model. This list of data items in need of transfer is maintained

and managed in a queue.

2.3.1.4 Packet Transfer Scheduler

The packet transfer scheduler is the mechanism which at the downlink
transmission rate determines the contents of each successive downlink packet.
Fundamental definition of the data scheduled for downlink transfer is determined by

the user (see the discussion of the User Interface in this section). Normally, for any

given transmission frame the user will have identified the particular piece of data to be
transferred via the downlink. In "spare frames" where this is not explicitly dictated, the
Packet Transfer Scheduler goes to the head of the Change Packet Queue and

removes the highest priority item, preparing it for transfer. With each world model data
item possessing its own relative criticality level (thus providing a rough measure of its
importance), transfer priority of items in the Change Packet Queue can be assessed.
In the current implementation the position of a data item in the downlink transmission

queue is determined by a combination of how long the item has been in the transfer

queue, and its relative criticality. In some cases a data item of low criticality may be
transferred ahead of another data item which possess a higher criticality because it

has been in the transfer queue significantly longer. This queueing approach
guarantees that data items which have relatively low criticality do not starve (e.g. they

are never transferred), but that data items which have greater significance are more

rapidly updated as they change.

2.3.1.5 User Interface

Through the user interface, configuration of the remote link simulation is controlled.

For the definition of the uplink a menu is used to set the packet transfer rate, the packet

size (in bits), the time delay and encoding method used to transfer remote control data.

Operation of the remote system sJmulato__r can also beenab/ed and disable from this
menu. A second menu to control the downlink permits the user to set the downlink

packet rate and to explicitly configure the transmission rate of the following world
model data items:

• Robot Commanded Position

• Commanded Joint Positions

• Joint Voltage Commands & Motor Tachometer Impedance Offset

• End Effector Forces

• World Forces

12



• Actual Joint Positions

• System State Variables

• General System Data that is Changing

As the remote link simulation is enabled and disabled, communications tools used

with the world models redirect access appropriately between the Ground Base World
Model and the Remote Robot World Model. The fact that this is occurring remains

totally transparent to the modules accessing world model data items. This greatly
enhances the ability to debug the system allowing the user to browse multiple world
models as needed.

2.3.1.6 World Model Change Request Queue

On the ground based user interface side of the remote link, commands and change
requests coming from the user interface are queued before they can be transferred to

the remote system. Requests wait in this queue until they are packetized and sent.

Once a data item has been packetized and is passing through the delay subsystem,
the new state of this world model data item is reflected in the Ground Based World

Model. On the remote manipulator side of the link, whenever a packet is received both

the Downlink and the Remote Robot World Model are updated to reflect the new state

of the system. If the particular data item updated is found in the downlink packet
queue (ready for downlink transmission) it is then removed.

2.3.1.7 Uplink Priority Scheduler

The Uplink Priority Scheduler is used to determine the relative sequence of
packets which are transferred from the user interface/ground station simulator to the

remote manipulator. A simple priority based scheduling algorithm is used, preempting

any stream of direct remote command packets with any other command type being
issued from the user interface. Since typically the number of commands coming from
the user interface directed to the real-time controller is small, a First In, First Out (FIFO)

queue is used to hold pending commands. When no pending user interface uplink
control commands are available for transmission, the uplink continues to transfer

remote direct command packets according to the mode of operation (Cartesian servo,

joint servo or teleoperation) of the ground based system.

2.3.1.8 Packetization/Depacketlzation

For the data being transferred to and from the remote manipulator packetization
and depacketization is necessary. Within the system, uplink packaging is much more

sophisticated that that for downlink data due to the narrower bandwidth of the uplink

side. Before transmission, command information must be compressed if robust
teleoperation is to be possible. A discussion of these compression techniques is

provided in the following paragraphs.

There are currently three specialized modes of transfer which are used to directly

control the motion of the remote manipulator. These three modes are the transmission
of an absolute robot commanded position, the transmission of a Cartesian delta

13



(typically associated with a hand controller ), and the transmission of absolute robot
joint commands. In each case it is taken for granted that'six degrees of freedom (DOF)
of information is to be transferred. In each case real numbers are normalized and

scaled across some metric of the robot world environment (maximum positions for

Cartesian workspace or joint angle or maximum delta respectively). This reduces the

storage and transmission requirements for the data without unduly diminishing its

accuracy.

For the direct remote command of the manipulator (this implies direct transmission

of Cartesian or joint absolute positions or deltas) there are currently four encoding

methods proposed for data transfer. The first and most simplistic of these transfer

schemes is the Standard Transfer packet method (Figure 2-4). This type of packet is

comprised of a more bit (indicating that the packet is just one more in a continuous

stream), a 2 bit DOF selector field followed by 2 individual data fields containing the

command data for the robot. When the packet type is a robot Cartesian reference

command the data fields contain normalized integer representations of either X and Y,

Z and Yaw, or Pitch and Roll Cartesian commanded positions. The degree of freedom

selector field indicates which of these coordinate pairs is present in a given packet. As

the length of these packets range from 23 to 27 bits, additional bits are successively

added to each of the data fields in a left first, then right, then left again fashion. When

uplink packets are sized at 23 bits each field is 10 bits in length. When the packet size
is 27 bits each data field contains 12 bits. When hand controller delta commands are

being processed the data fields hold X & Y deltas, Z delta and Q1 of a quatemion, or

Q2 and Q3 of a quaternion (Note that given Q1, Q2, and Q3, Q4 can be determined by

normalizing the quaternion vector; this is safe for delta transmissions but is
undesirable for transmission of commanded Cartesian orientations because of

relatively large errors associated with discretization). In the case of the joint reference

command packet, base and shoulder, elbow and first wrist, or second wrist and third

wrist commanded joint position data is scaled and encoded.

,
It' 'Data Field Data Field

DOF Select

More Bit .....

Figure 2-4. Uplink Data Compression: Standard Transfer Packet

The second encoding scheme used for the direct remote command uplink was the

high resolution sliding scale methodology (Figure 2-5). This technique provides three

data fields in each packet as opposed to two (as in the Standard Transfer packet). In

this case, only 1 bit to select the DOF is needed (assuming uplink data will never have

more than 6 degrees of freedom). This packet type differs from the Standard Transfer

packet in that in addition to the third data field a multiplier field also exists. This

z
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multiplier dictates the number of left bitshifts that the data found in the 3 data fields
must be subjected to before they are embedded into output data. In 23 bit packets this

is a 3 bit field (providing an 8X multiplier), and in all larger packets it is 4 bits (providing

a 16X multiplier). As additional bits are successively added to the packet size they are

evenly distributed among the data fields left to right. When Cartesian robot reference

command packets are provided they contain either X,Y and Z, or yaw, pitch and yaw

commanded position components within the data fields. Similarly, hand controller

delta packets will contain either X,Y and Z scaled deltas or Q1 ,Q2 and Q3 scaled

quaternion values. Finally, joint reference command packets will provide either scaled

base yaw, shoulder pitch and elbow pitch commands or scaled first wrist, second wrist

and third wrist commands. Note that using this multiplier a higher resolution of robot

commands can be maintained than is possible with Standard Transfer packets.

I1 ]1 ] 3-4bits ]6-7 bits 16-7 bits 16-7 bits ]

It' I tMultiplier Data Field

DOF Select Data Field
More Bit Data Field

Figure 2-5. Uplink Data Compression: High Resolution Sliding Scale Packet

The third encoding method, referred to as the High Speed Sliding Scale encryption

scheme, is comprised of one data packet with data for all six DOF of the robot (Figure

2-6). Each data field is either 3 or 4 bit of differential data for each DOF (note that

because all are differential transmissions this is different from other packet types). A

scale field of 2 bits provides a shift multiplier to be applied to each of these data fields

before they are combined with existing data to form an output command. Commanded

Cartesian reference delta packets contain the X, Y, Z and yaw, pitch, yaw differentials

successively. Hand controller differentials are transferred as X, Y, and Z deltas

followed by Q1, Q2, Q3 quaternion differential components. Commanded joint angle

data ordering follows the robot's sequential joint structure from shoulder yaw to the
third wrist.

!' I i I I I ! I I

/ I_ultiplier Data Fields

More Bit

Figure 2-6. Uplink Data Compression: High Speed Sliding Scale Packet
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The fourth direct command encoding scheme ,is called the Modified Sliding Scale

(Figure 2-7). This method is very similar to the High Resolution Sliding Scale method
and the Standard Transfer technique. This method contains two separate data fields

each with a separate DOF selector field. The encoding method of a shift multiplier

followed by a scaled integer value for the particular degree of freedom is synonymous

with the technique use in the High Resolution Sliding Scale method. The contents of

the data packets (as normalized integer values and their order) are also equivalent.

An advantage offered by this encoding method is that information for two independent

degrees of freedom __betransferred!n0ne _acket, ea_ with its own shift multiplier

which can optimize the posittion of the datain the _dat_afield !n the packet. A technique

such as is in floating point math where an implied bit is found to the left of the mantissa

could be applied here to increase the information transferred in each packet.

i I I I ! I I I

I I Da,aFeoI I D,a e°
/ Multiplier / Multiplier
DOF Select DOF Select

More Bit

Figure 2-7. Uplink Data Compression: Modified Sliding Scale Packet

Each of ii_ese encoding schemes has its reiative advantages and disadvantages.

The Standard Transfer packet is simpl e to encode and decode, but requires a
minimum of three packets to form a complete 6 DOF command. Another disadvantage

of thestandard transfer scheme is that the smaller the size of the data packet, the less

resolutionthe data in the packet has. With only two packets the High Resolution

Sliding Scale packet can form a comp_!ete command (a 33% improvement over the

Standard Transfer), however, significant bits may be 10st wl_enactual commanded

positions are being transferred requiring the system to Wait fortransmission of lower

order_bits before a tru_uiycomplete Command is received. A_lthough in the case of

absoiuteposition commands this can pose a problem, transmission of delta in this

fashion can be very efficient (because differential information can be scaled to

minimize use of the upper bits in a value). The High Speed Sliding Scale algorithm

can encode a complete command in only 1 packet but can only be used in a
differential transmission mode, not in an absolute command mode. Also, because

each data field is so small, there is always a tradeoff between bandwidth of motion and

quantization errors. The Modified Sliding Scale method combines the advantages of

the High Resolution Sliding Scale with the flexibility of being able to select

independent degrees of freedom concurrently. Its disadvantage is that it can have a

lower ban d_widthrt_han the Standard Transfer scheme if all robot degrees of freedom

are changing rapidly.
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Downlink packaging is much simpler, with each packet containing 230 bits. These

bits are divided into 18 individual fields (see Figure 2-8). The right most components

are comprised of fourteen 16 bit data fields. These data fields are filled with raw data

dumped into them in a left field first fashion. No specialized compression goes on.

This permits the transfer of up to seven 32 bit reals, fourteen 16 bit integers or twenty-

eight characters per packet. The left most bit in the packet (the more bit) indicates

whether the packet is a continuation in a stream of packets, and the power-up bit

indicates whether the remote manipulator is actively powered up. An error bit is set to

indicate that the robot is currently in an error state and a mode field is used to indicate

information about the current configuration and state of the uplink. Predefined packet

sequencing and synchronization is assumed on both ends of the data link. This

reduces overhead and increases system bandwidth by permitting multiplexing of data

through the manipulator to ground station link.

I I' 11 I "ac"e'seac.

Uplink Status Data Fields

Error

Robot Powered-up
More Bit

Figure 2-8. Downlink Data Compression Packet Format

To fully implement the narrow bandwidth remote link simulation system described

here additional processing capability had to be added to the Heurikon/IRSS

computational chassis. Selected was a single Heurikon V2F processor card much like

those already performing real-time calculations in the computational chassis. The only

difference between this processor card and others in the same chassis is that the new

processor card has 4 megabytes of on-board memory as opposed to 1 megabyte. In a

hardware/software interaction sense, Figure 2-9 contrasts the phase II world model to
user interface communications method to that implied in this discussion. As can be

seen, the additional processing capability simply acts as the link between the user

interface and the real-time robot control/servo system.
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r
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J Data Flow

World Model Section

User Interface

Unix V20 Processor

V2F Processor

Simulation Link Processor I

Real-time Processing

World Model Section J

World Model Section I

World Model Section

World Model Section

V2F Processor

Figure 2-9. Data Flow Comparison for Phases II and IV

In summary, the system designed for the simulation and control of a remote

manipulator provides a realistic and practical approach to overcoming problems
associated with a limited bandwidth link with variable time delay. Although every

aspect of the proposed design was not fully realized in the phase IV effort, a

foundation has been established upon which further enhancements can build. It is

expected that results coming from this implementation and the study of such, could

have significant impact upon the assessment and feasibility of performing many

satellite servicing tasks from a ground base control station. With the flexibility that this

system provides in terms of data rates and packet sizes, a variety of comparison and

performance studies could be performed that evaluate packet encoding

i
!
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methodologies versus user response bandwidth. In the long term, methodologies for
swapping of encryption techniques as a function of the operational motion may need
to be considered.

2.3.2 Off-line Simulation Capabilities

To provide the capability to develop software for the IRSS system independently

from the PFMA and related hardware, a non-real time system simulator has been

gradually developed and upgraded through phase II and phase IV of this contract.
This simulator permits an IBM-PC to be used as a hardware platform on which real-

time software can be debugged, evaluated, modified and enhanced. Using this

development environment approximately 85% of the software modules which are used
in the real-time control of the PFMA are linked directly (without source code changes)

to simulation software utilities. Operating on a PC, a large variety of tools are available
for debug, configuration management and graphics. Because the simulation is non-

real time, relative synchronization of tasks and system data flows can be examined at
various levels of detail.

At the heart of this simulation is software that emulates the VRTX multi-tasking
kernel found on each of the Heurikon V2F real-time computational processor cards.

This kernel maintains records of which system tasks are active and executes them

according to their relative priority and availability. The full IRSS system user interface
executes concurrently with the real-time simulation allowing the user to monitor system

parameters and inject new commands and disturbances into the system. A standard

plant joint model is used to emulate independent joint dynamics for all six degrees of
freedom of the robot. With the modular nature of these plant models as well as the

various joint controllers this system can be used to simulate robots other than the

PFMA and design joint controllers for such.

Without hand controllers, touch screens or the PS-390 interfaced to the PC,

operation of the simulation via teleoperation, touch, and graphics is not currently
provided although these capabilities could be added. Due largely to the fact that

portability of system software has recently been considered, porting of this simulation
to a Unix based workstation or mainframe computer could be performed to increase

the system's speed of execution and its capabilities. Currently, continued

enhancements of the IRSS control system are being performed using the PC.
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3.0 Teleoperation Performance Study

3.1 Introduction

This study evaluated three issues related to remote control of robotic systems.
These three issues were the control reference frame, impedance level, and amount of

time delay present in the system. The effect of different levels of these parameters on

operator performance was determined.

3.1.1 Reference Frame

Reference frame refers to the location and orientation of the axis of control. The

reference frame can be fixed in space or can be located with respect to a moving point

(object) in space. An example of a reference frame fixed in space would be a
reference frame coincident with a fixed camera or fixed portion of the robot, for

example the shoulder. With a fixed reference frame, the axes would remain fixed

regardless of the orientation of the robot gripper. For example, +Z would always point
up from the base of the robot (even if the gripper was rolled 90-clegrees such that it

was looking upside down). An example of a reference frame not fixed in space would
be one coincident with the gripper or a gripper mounted camera on the manipulator.
In this case, the reference frame changes to correspond to the orientation of the

gripper (or gripper mounted camera). For example, +Z would always be up from the
gripper (as opposed to up in fixed space). Theselection of the/ocationofthe
reference frame end whether or not the reference frame is fixed in free space or fixed

with respect to a moving object is based on many considerations such as the type of

task being performed, size of the workspace, and feedback being provided to the

operator.

3.1.2 Impedance

Impedance refers to the apparent stiffness and damping of the manipulator at the
end effector. Impedance control laws allow compliance to be programmed, reducing

the forces resulting from environmental contact. In Cartesian space, end effector
forces measured by the wrist-mounted force/torque sensor can be utilized to modify

the effective impedance of the end effector using position-based impedance control.
A stiff manipulator exerts large forces on the environment during contact in response to
small commanded motions. This can result in physical damage to the contacting parts.

A soft manipulator yields when in contact, resulting in smaller interaction forces. If the

impedance control is too soft however, the task may be difficult or impossible.
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3.1.3 Time D¢iay

One of the problems that arise in remote control of robotic systems is the

introduction of time delays in the transmission of commands from the operator to the

robot and feedback from the robot to the operator. Delays on the order of 2 to 4

seconds are reasonable for ground control of space robotic systems. 2 Studies have

shown that operator performance is affected negatively by the introduction of time

delay for such tasks as fine precision peg-in-the-hole 3 and pursuit tracking, 4 and that

operators adopt a move-and-wait strategy. 5

3.2 Research Methodology

This study was conducted at the Marshall Space Flight Center (MSFC) in the

Robotics Laboratory. The operators controlled the Proto-Flight Manipulator Arm

(PFMA) to perform a simulated Orbital Replacement Unit (ORU) replacement task.

3.2.1 Apparatus

Figures 3-1 and 3-2 show the layout of the various components used in this study.

Two task panels were used and each had an ORU receptacle. Contact switches were

mounted on the rear face of the receptacles to detect when the ORU was completely

inserted. Feedback of successful insertion of the ORU was provided to the operators

by the illumination of an Light Emitting Diode (LED) located above each ORU

receptacle. Two infrared photo-interruptor sensors were placed on standoffs of

approximately 1.5 inches in front of each panel to indicate when the ORU was near the

front face of the panel and receptacle (Figure 3-3). This sensor information was used

to signal the transition between the slewing and fine alignment task segments. For

example, Task Panel (TP) #1 Insertion subtask started when the ORU was sensed by
the sensor on the standoff and ended when the sensor on the rear face indicated that

the ORU was completely inserted.

2Buzan, F. T. and Sheridan, T, B. (1989, November). A model-based predictive operator aid for

telemanipulators with time delay. In Proceedings of the 1989 IEEE International Conference on Systems,

Man, and Cybernetics. November 14-17, 1989. Cambridge, MA. NY: IEEE.

3Hannaford, B. and Kim, W. S. (19, November). Force reflection, shared control, and time delay in

telemanipulation. In Proceedings of the 1989 IEEE International Conference on Systems, Man, and

Cybernetics. November 14-17, 1989. Cambridge, MA. NY: IEEE.

4McCorrnack, L. B., Detroit, M. J., and See, D. N. (1987, May). Improving pilot-vehicle integration

using cockpit display dynamics. In Proceedings of the IEEE 1987 National Aerospace and Electronics

Conference NAECON. May 18-22, 1987. Vol. 2. NY: IEEE.

5Ferrell, W. R. (1965). Remote manipulation with transmission delay. IEEE Transactions on Human

Factors in Electronics, HFE-6 (pp. 24-32). Cambridge, MA: IEEE.
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Task Panel #1 TP #1 Contact

Task Panel #2

TP #2 Sensor

TP#2O,u"'-.../ \
Receptacle

TP#2
Contact f _,

Switch ¢_ y %,

X//'-
b80-

TP#t ORU

Receptacle

TP #1 Sensor

a57.5-
Camera

- -. Centerline of ORU Receptacle
a Front of Camera Lens to

Centerline of ORU Receptacle
b Front of PFMA Pedestal to Front

of Task Panel #1

Figure 3-1. Top View of Worksite.

The operators controlled the PFMA via a 6-degree of freedom (DOF), rate CAE
hand controller located at the workstation (Figure 3-4). The CAE hand controller fits in

the palm of the operator's hand and has an activation switch located at the index

finger, which must be fully depressed to issues commands to the PFMA. The

workstation has three-bays and is configured like th e console currently envisioned for
the Orbital Maneuvering Vehicle (OMV). Partitions were placed between the operator

and PFMA such that the operator could not see the worksite directly. Two black and

white camera views of the worksite were presented on the console monitors.
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CCenterline of TP #20RU Receptacle
dtO edge of TP #1

Centerline of TP #10RU Receptacle
to edge of rPt #f

Figure 3-2. Front View of Worksite.

3.2.2 Task

The task simulated the major elements of an ORU replacement task. This task
required the subjects to remove the ORU from TP #1 receptacle, slew to TP #2, insert it

into TP #2 receptacle, remove it from TP #2 receptacle, slew back to TP #1, and insert
it into TP #1 receptacle (refer to Figures 3-1 and 3-2). The subjects received feedback

when the ORU was inserted fully via an LED located above each ORU receptacle. The
task contained two distinct componentsnlarge, non-environmental contact slewing

motions, and fine alignment and positioning motions.

3.2.3 Subjects

Twelve students from the University of Alabama at Huntsville participated in this
study. Six of the subjects were male and 6 were female. The subjects were paid

$10.00 per hour for their participation. None of the subjects were familiar with the
experimental task, hand controller, or manipulator used in this study.
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Figure 3-3. Photograph of Manipulator and Task Panels with SenSOrs

i
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Figure 3-4. Photograph of Subject at Operator Workstation.

3.2.4 Procedure

The subjects attended a training session during which they were informed of the
experimental setup, including information on the operation of the PFMA, hand

controller, and location of cameras. The subjects were informed of their rights as study
participants, signed an Informed Consent Form (located in Appendix A), and filled out

a background questionnaire (located in Appendix B). The task was explained to the

subjects and demonstrated by the test monitor. The operators were trained on the

system by performing six training runs that were performed in the following order:
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• End Effector Reference Frame, Stiff Impedanc(_, No Time Delay

• End Effector Reference Frame, Soft Impedance, No Time Delay

• World Reference Frame, Stiff Impedance, No Time Delay

• End Effector Reference Frame, Stiff Impedance, 1 Second Time Delay

• End Effector Reference Frame, Stiff Impedance, 2 Seconds Time Delay

The first training run was viewed as the baseline condition and was run twice. In

the four remaining runs, one parameter changed from the baseline. The operators

were informed of the changes between training runs so that they could better

understand the differences observed in system performance•

In addition to the two camera views provided on the control console, the subjects

were allowed to view the task directly and were provided with a graphic simulation of

the manipulator during the training session. The subjects were aware that the direct

view of the task and graphic display would not be available during the experiment. The

participants were told that it was more important to concentrate on performing the task

well, as opposed to performing it fast.

At the beginning of each set of data collection runs, the subjects were given a

practice run with the baseline condition. Prior to each data collection run, the

participants were told the reference frame condition for that run, but were not told the

impedance or time delay conditions. At the completion of each experimental run, the

participants provided the test monitor with a Cooper-Harper (C-H) s rating of the task

difficulty (rating scare is located in Appendix C). After the comptetion of art 12

experimental runs, the subjects completed a post-test questionnaire (located in

Appendix D). Experimental runs that could not be completed within 10 minutes were

stopped and were recorded as incomplete. Complete task segments from incomplete

(discontinued) runs were included in the analysis.

3.2.5 Experimental Design

A within-subjects design was used, such that all of the subjects experienced all of

the experimental conditions. A fully counterbalanced presentation order was used,

meaning that no two subjects experienced the experimental conditions in the same
order.

3.2.5.1 Independent Variables

Reference frame control mode, time delay, and impedance level were evaluated in

this experiment.

6Wierwille, W. W. and Casali, J. G. (1983). A validated rating scale for global mental workload

measurement applications. In Proceedings of the Human Factors Society--27th Annual Meeting.

October 10-14, 1983. Norfolk, VA. Vol. 1, pp 129-133. Santa Monica, CA: HFS.
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Reference Frame Control Mode -. This study evaluated two reference frame
control modes---a World and an End Effector frame of reference. The world reference

frame was located at the point of intersection of the PFMA shoulder pitch and shoulder
yaw. This control mode mapped hand controller motion relative to a fixed coordinate

system in space, regardless of the orientation of the end effector. The end effector
reference frame was located at the center of the gripper and its coordinate system

varied in space relative to the orientation of the end effector. For example, in the World

Reference Frame condition, the +X direction was always pointing towards Task Panel

#1. In the End Effector Reference Frame, +X was always pointing out of the end of the
gripper, regardless of the orientation of the gripper. When the end effector and world

frames were aligned, such as when the ORU was inserted into Task Panel #1

receptacle, these two control modes were the same. However, when the two frames
were not aligned, such as when inserting the ORU into Task Panel #2 receptacle, the
control modes were different.

Impedance - Two levels of impedance were evaluated. The first level was

referred to as "stiff" and consisted of the following stiffness and damping values:

Stiffness: kx = 2 ky = 2 kz = 2 kox,koy,koz = 20

Damping: bx = 10 by

The second level was referred to

and damping values:

Stiffness: kx = 2 ky

= 10 bz = 10 box,boy,boz = 100

as "soft" and consisted of the following stiffness

=1o kz=2 kox,koy, koz = 20

Damping: bx = 10 by = 10 bz = 10 box,boy,boz = 100

The parameter and value that differed between the two conditions is noted in bold.

Time Delay - The three levels of time delay that were evaluated were no time

delay, 1 second time delay, and 2 seconds of time delay.

3.2.5.2 Dependent Variables

Several objective performance measures were collected, including the amount of

time required to perform the task, successfulness of inserting the ORU in the
receptacle properly, and forces and torques at the end effector during insertion. The

ORU insertion success was based on whether or not the subjects fully inserted the
ORU into the ORU receptacle. This was determined by sensing the contact switch

mounted on the back surface of each ORU receptacle. Additionally, a C-H rating was
collected after each experimental run to provide a subjective assessment of task

difficulty.

3.3 Data Results

Pearson's (r) correlations were calculated between the dependent variables and it

was determined that the appropriate dependent measures for analysis purposes were
TP #1 and #2 Insertion Success rate, total time to complete the task (Task Duration),

Cooper-Harper rating of task difficulty, and the root mean square (RMS) Forces and
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Torques at the gripper for TP #1 and #2 Insertion. Correlations between these

dependent variables are located in Table 3-1.

Table 3-1.

Dependent
Variables

Task .Duradon

TP #I Insertion
Succc,_

TP #2 Insertion

Success
TP #l In_rlion

RMS Forces

TP #2 Insertion

RMS Forces
TP #1 Insertion

RMS Torques
TP #2 Insertion
RMS Toraues

Cooper

Rating
0.634*

-0.003

-0.158

0.130

0.174

0.1406

Correlation Matrix for Dependent Variables.

Task
Duration

TP#1
Insertion
Str.cess

TP#1
Insertion
RMS Forces

TP #2
Insertion
RMS Forces

TP #2
Insertion
S_

0.092

0.048

0.045

0.025

TP#1
Insertion RMS

Torques

*l-Tailed Significance at 0.001

TP #1 and #2 Insertion Success rates were not correlated to each other or to the

other dependent variables; thus, they were analyzed separately using univariate

statistical procedures. Because this is attribute data (values are coded as 0 and 1),

Pearson Chi-Square statistics 7 (with Yates correction) were calculated. Task Duration

and C-H rating were correlated to each other but not to the other dependent variables;

thus, these variables were analyzed together using Multivariate Analysis of Variance

(MANOVA) statistical procedure. 8 The RMS Force and Torque variables were

correlated and should be analyzed together using multivariate statistical procedures.

However, all four dependent variables could not be analyzed together because of

limitations in the statistical analysis software used. Therefore, two MANOVA statistical

procedures were run. One analysis used the RMS Force and Torque at the end
effector for the TP #1 Insertion, and a separate analysis was used with the RMS Force

and Torque at the end effector for the TP #2 Insertion. Because of the increased error

associated with running multiple tests with correlated variables, a more stringent p-

value of 0.01 was required to accept the difference as statistically significant. A

significance level of 0.05 was used for the other procedures.

7Hicks, C. R. (1973). Fundamental concepts in the design of experiments (2nd ed.). NY: Holt,
..........................

Rinehart and Winston.

8Chatfield, C. and Collins, A. J. (1980). Introduction to multivariate analysis. London: Chapman and

Hall.
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Kolmogorov-Smirnov Goodness of.Fit tests o were run on these dependent
variables. The results of these analyses indicated that the distributions of these

dependent variables are not significantly different from the normal distribution.

The data analysis results are presented in the following sections grouped by

research issues (independent variables), instead of being grouped according to the
statistical test procedures run. Appendix E contains statistical tables with test statistics

and significance level per dependent variable.

3.3.1 Between Subjects Effects

Pearson Chi-Square statistics showed no statistically significant between-subjects

effect on ability to successfully perform TP #1 Insertion (Chi-Square statistic = 18.96, p

= 0.062) or TP #2 Insertion (Chi-Square statistic - 12.20, p = 0.349). MANOVA results

showed significant between-subjects effects for:

• Task Duration and C-H rating (Pillai's Trace statistic = 0.918, p = 0.000; Task

Duration F = 57.265, p= 0.000; C-H rating F = 110.155, p= 0.000);

• RMS Force and Torque levels for TP #1 Insertion (Pillai's Trace statistic =

0.90983, p = 0.000; RMS Force F = 62.4506, p = 0.000; RMS Torque F =

12.8551, p = 0.009); and

• RMS Force and Torque levels for TP #2 Insertion (Pillai's Trace statistic -

0.89204, p = 0.001 ; RMS Force F = 57.5600, p = 0.000; RMS Torque F =

16.5296, p = 0.005).

3.3.2 Reference Frame Condition

Pearson Chi-Square statistics showed no statistically significant effect of reference

frame on the ability of the subjects to successfully perform TP #1 Insertion (Chi-Square

statistic = 1.48, p = 0.224) orTP #2 Insertion (Chi-Square statistic -- 2.53, p = 0.112).
Reference frame had a statistically significant effect on Task Duration (F = 13.849; p =

0.004). The average Task Duration according to reference frame condition is graphed

in Figure 3-5. As illustrated, the World reference frame required approximately 43%
more time than the End Effector reference frame.

The Task Duration data was divided into four discrete task segments to better

understand the effect of reference frame condition 0 n amount of time required to

complete the task. Two of the task segments are time to insert the ORU in each
receptacle, referred to as TP #1 Insertion Duration and TP #2 Insertion Duration. The

remaining two task segments are time to slew between the two task panels. Slew #1
Duration refers to the time required to slew from Task Panel #2 to Task Panel #1.

Slew #2 Duration refers to the time required to slew from Task Panel #1 back to Task

Panel #2. (refer to Figure 3-1 for the configuration of PFMA and task panel).

9Norusis,M. J. (1986). SPSS/PC+forthe IBM PC/XT/AT. Chicago:SPSS, Inc.

29



Duration

(Seconds)

485.8
500 -,-

400 341.2
350

300t"
2sot"
2001"
lso-i-
1°°"1"

World End Effector

Reference Frame

Figure 3-5. Task Duration per Reference Frame.

Figure 3-6 shows the average time required for each task segment by reference
frame condition. As shown by this figure, there is no difference between reference

frame conditions in the amount of time required to complete Slew #2 or TP #1
Insertion. This result is understandable because both reference frames were aligned
when the end effector was pointed at the destination--namely, TP #1. The difference

between the two reference frame conditions is due to Slew #1 (from TP #1 to TP #2)
and TP #2 Insertion requiring more time with the World reference frame versus the End

Effector reference frame. The destination for Slew #1 and TP #2 Insertion is yawed

approximately 45-degrees to the left of the centerline (X axis). Therefore, when the

gripper was oriented towards TP #2, the World and End Effector references were not
aligned. Thus, the World reference frame required more time to perform those task

segments where the reference frame were not aligned with the end effector.

A significant effect of reference frame on C-H rating was also found (F = 18.190; p ---

0.002). Figure 3-7 shows the average C-H rating per reference frame condition. As
shown by this figure, the World reference frame was perceived as more difficult than

the End Effector reference frame. Since the World reference frame was perceived as

more difficult, it can be hypothesized that theWorld reference frame required more

time to perform the task because it required more cognitive processing. _-_

There was no statistically significant effect of reference frame for TP #1 Or #2

Insertion RMS Force and Torque levels (TP #1 Pillai's Trace value = 0.041, p = 0.881;
TP #2 Pillai's Trace value = 0.541, p = 0.097).
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Figure 3-6. Task Duration by Task Segments.
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Figure 3-7. Cooper Harper Rating per Reference Frame.

Post test questionnaire results showed that 11 of the 12 operators (91.7%)

preferred using the End Effector reference frame for performing the ORU replacement

task. The subjects were also asked to rate how strongly they preferred one reference

frame over the other reference frame. The strength of preference was rated on a scale

from "0" to "3" with "0" for no, "1" for slight, "2" for moderate, and "3" for strong

preference. The average preference rating was 2.4, indicating a moderate to strong

preference for the End Effector reference frame. The one person who preferred the

World reference frame rated his/her preference strength as a 3.
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The post-test questionnaire asked the operators to indicate what reference frame

they preferred for the two different task segments--slewing and fine alignment--and
the strength of their preference. Nine out of 12 operators preferred the End Effector

reference frame for slewing and the average degree of preference was a 2 (moderate).
The remaining 3 operators who preferred the World reference frame for slewing had a

average preference strength rating of 1.3 (slight to moderate). The difference between
the two preference strength ratings were not statistically significant (F = 1.15; p - 0.31).

All of the operators preferred the End Effector reference frame for fine alignment and

the average strength of this preference was 2.7 (moderate to strong).

The operators were also asked to indicate why they preferred one reference frame

over the other. In general, the operators indicated that the End Effector reference
frame was easier to use, felt more natural, required less mental effort, and was more

responsive. The reason for preferring the World reference frame was that it allowed
pre-planning and provided an easier mental model.

3.3.3 Impedance Level Condition

Pearson Chi-Square statistics showed no statistically significant effect of
Impedance level on TP #1 or TP #2 Insertion Success rate (TP #1 Chi-Square statistic

= 3.05, p = 0.081 ; TP #2 Chi-Square statistic = 0.60, p = 0.438). No statistically
significant effects due to impedance level was found for either Task Duration or C-H
rating (Pillai's Trace value = 0.389, p = 0.109). There was no statistically significant

effects of impedance level for TP #1 or #2 Insertion RMS Force and Torque levels at
the gripper (TP #1 Pillai's Trace value = 0.332, p = 0.298; TP #2 Pillai's Trace value =

0.337, p = 0.292).

The operators were asked on the post-test questionnaire if they were able to
distinguish between the two levels of impedance. Five of the 12 operators (41.7%)

indicated that the difference between the two levels was noticeable. Of the 5 subjects

who noticed the difference in impedance levels, 3 indicated a preference for the "stiff"
impedance for performing the task and gave an average rating of the strength of their

preference as a 2 (moderate). The 2 subjects who preferred the "soft" impedance also
gave a 2 as the average strength of their preference.

The operators were also asked to indicate which impedance level was preferred for

the different task segments. Three of the 5 operators preferred the "stiff" condition for
slewing and gave an average preference strength rating of 1.33 (none to slight). The 2

operators who preferred the "soft" condition for slewing gave an average preference
strength rating of 1.5 (1 subject rated no preference and one rated a slight preference).

For fine alignment tasks, 4 of the 5 preferred the "soft" impedance and gave an

average preference strength rating of 3 (strong). The 1 subject that preferred the stiff

condition gave an average strength rating of 2 (moderate).

The subjects were asked to indicate the reason for preferring one impedance level
over the other. The main reason expressed for preferring the "stiff" impedance

condition was that it was more responsive to small motions without overshooting. The
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main reason for preferring the "soft" impedance condition was that it had a more
natural, relaxed feel.

3.3.4 Time Delay Effect

Pearson Chi-Square tests indicated no statistically significant effect of time delay

on the ability of the subjects to successfulty perform TP #1 or #2 Insertion (TP #1 Chi-
Square statistic =4.62, p = 0.100; TP #2 Chi-Squars statistic = 3.90, p = 0.142). A

MANOVA analysis found that time delay had a statistically significant effect on Task

Duration and C-H rating (PUlai's Trace value = 0.855, p = 0.000; Task Duration F -
28.703; p = 0.000; C-H F = 24.177; p = 0.000).

The average Task Duration according to time delay condition is shown in Figure 3-
8. As shown in this graph, the time required to complete the task increased as delay

increased. The increase between no time delay and 1 second of time delay
(approximately 45% increase) is much larger than the increase between 1 second and

2 seconds (approximately 16% increase). Thus, the increase of time delay (up to 2
seconds) appears to degrade performance less than the addition of time delay.

Duration

(Seconds)
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500 •
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I

250 I I I

0 1 2
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Figure 3-8. Task Duration by Time Delay Condition.

The Task Duration data was divided into the four task segments defined in Section
3.3.2. Figure 3-9 shows the average amount of time to complete each segment per
time delay condition. As shown by this figure, the increase in time delay affected the

amount of time required to complete Slew #1 the most. Slew #1 was the first slew that

the operators performed. It is feasible that this task segment was affected more by time

delay than the other segments simply because of the effect of learning. Once the

operators became accustomed to the presence of time delay, as the task progressed, it
may have influenced performance less.
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Figure 3-9. Task Segment Duration by Time Delay Condition.

As already mentioned, the MANOVA showed a statistically significant effect of time

delay on C-H rating. Figure 3-10 shows the average C-H rating per time delay

condition. As shown by this figure, the operators' perception of task difficulty increased

as the time delay increased. Since the subjects required more time to perform the task

and the task was perceived as more difficult as time delay increased, it can be

hypothesized that more cognitive processing was required as time delay increased.

There were no statistically significant effects of time delay for TP #1 or #2 Insertion

RMS Force and Torque levels (TP #1 Pillai's Trace statistic = 0.241, p = 0.854; TP #2

Pillai's Trace statistic = 0.831, p = 0.076).

All 12 of the subjects indicated on the post-test questionnaire that they were able to

distinguish between the time delay conditions. The operators were queried as to the

type of strategy they used to accommodate the time .delay. In general, the operators

indicated that they adopted a move and wait strategy, and made smaller, more

precise, single axis inputs. Four of the operators adopted a strategy where they

actually est!mated_or_timed the delay and Paced the lag between their inputs to equal

the delay. The operators also indicated that the task was more time consuming and

required more thoughtw=ith time delay than without time delay. The subjects were also

asked to recommend methods for making the task easier to perform in the presence of

time delay. All of the suggestions inferred the use of a predictive display.

3.3.5 Interaction Effects

The results of MANOVA analYSeS indicated no two- or three-way interaction effects
for Task Duration, C-H rating, TP #1 Insertion RMS Force and Torque levels, or TP #2

Insertion RMS Force and Torque levels. See Appendix F for the Pillai's Trace and p

values.
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Figure 3-10. Cooper Harper Rating by Time Delay Condition.

The post-test questionnaire asked the subjects to indicate the reference frame that
they would prefer under the different combinations of delay and impedance condition.

Regardless of the combination of conditions, 9 of the subjects preferred the End

Effector reference frame and 1 preferred the World. One subject preferred the World
reference frame when there was no time delay and preferred the End Effector

reference frame in the presence of time delay. No clear trends emerged when the
subjects were asked to selected the preferred impedance condition per combination of

reference frame and time delay conditions.

3.3.6 Predictors of Operator Performance

Each subject completed a background questionnaire that asked for information

such as how many years s/he has had a drivers' license, previous experience playing
video games, and experience controlling remotely controlled models. (The

background questionnaire is located in Appendix B). Stepwise regression analyses

were performed to determine if there were any background characteristics of the

subjects that would predict the amount of time required to perform the task (Task
Duration) and the perceived difficulty of the task as measured by a C-H rating (the two

dependent variables that were affected by the experimental conditions).

The results of the regression analysis on Task Duration yielded no factors that
predicted performance. The results of the regression analysis on C-H rating yielded

two factors that predicted subjective assessment of task difficulty. The number of years

that the operator had a drivers license accounted for 58% of the variance in the data;

the addition of the person's college major into the regression equation accounted for a

total of 789% of the variation in the data. There was a negative correlation between

the number of years that the person has had a driving license and the C-H rating; thus,
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the longer the person had a drivers license, the easier they tended to rated the task
difficulty. With regard to college major, subjects whose rnajor was Management

Information Systems (MIS) tended to rate the task easier than those subjects in other

disciplines (e.g., physics, math, and engineering).

3.4 Discussion

High between-subjects variability was noted for all of the dependent variables,

except ability to successfully insert the ORU into the task panel receptacles. This
points out the need for using a within-subjects experimental design for research of this
type to account for the between-subjects variability.

The End Effector reference frame required approximately 43% less time than the

World reference frame to perform the ORU insertion task and all but one subject had,
on the average, a moderately strong preference for the End Effector reference frame.

When the task duration data was viewed by task segments, it was observed that the
World reference frame required more time to perform those task segments where the

reference frame was not aligned with the end effector. The subjective responses
showed that the majority of the operators preferred the End Effector reference frame for

the slewing portion of the task, all of them preferred it for the fine alignment portion.
This indicates the importance of controlling a manipulator about a point that has
relevance to the task being performed.

The World reference frame was rated as significantly more difficulty than the End

Effector reference frame. In light of this fact, it is possible that the World reference
frame required more time because it required more cognitive processing. This is

supported by the post-test questionnaire responses where the subjects indicated that
the End Effector reference frame was easier to use and required less mental effort.

No objective performance differences were observed between the impedance

conditions and no clear subjective results emerged. Only 5 of the 12 (41.7%)

operators indicated that they noticed a difference between the two conditions. Of
those 5 subjects, 3 preferred the "stiff" condition and 2 preferred the "soft" condition.

Additionally, the strength of their preference was "none" to "slight." No differences may
have been noted because there was not enough variability between the two
conditions. _ - ......

Time delay had a statistically significant effect on time to complete the task, such

that there was approximately a 45% increase from the no time delay condition to 1
second of time delay and approximately a 16% increase from the 1 second to 2

second time delay conditions. Analysis of the different task segments showed that
Slew #1--slew from TP #1 to TP #2--was affected the most by time delay, it is

possible that this task segment was most affected simply because of the effect of
learning, since this was the first task segment.

Not only did the amount of time required to perform the task increase with time

delay, but also the operator's subjective assessment of task difficulty (C-H rating)
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increased. This is in concert with the operators' responses that the task was more time

consuming and required more thought with time delay than without any time delay.
When queried as to the type of strategy used to accommodate the time delay, the
operators stated that they adopted a move and wait strategy and made smaller, more

precise, single axis inputs. The subjects also indicated that the a predictive display
would make the task easier to perform in the presence of time delay.

None of the background information gathered from the subjects helped predict task

performance as measured by Task Duration. However, the number of years that the
person has had a drivers license and s/he's college major did predict subjective

assessment of task difficulty, as given by a C-H rating. In general, the longer the
person has had a drivers license, the easier s/he rated the task and MIS majors rated

the task easier than other majors (e.g., physics, math, and engineering).
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Appendix A-Informed Consent Form

INFORMED CONSENT FORM

Teleoperation Study: Proto-Flight Manipulator Arm at Marshall Space

Flight Center (MSFC)

I agree to participate in the above study being conducted by Martin Marietta

Astronautics Group in conjunction with Marshall Space Flight Center, involving the
operation of the Proto-Flight Manipulator Arm (PFMA). The research team has

provided a general overview of the tasks that I will be asked to perform. I understand

that participation is voluntary and that I may discontinue the study at any time. All
information will be collected on an anonymous basis, which will ensure confidentiality.

I understand that I will be paid $10.00 per hour for my participation in this study. I

also understand that payment will be made by means of a check that will be mailed to
the address provided below.

SIGNATURE:

NAME (PRINTED):

DATE:

ADDRESS:

3 9 PRECEDING PAGE 8LANK NOT FILMED



Appendix B-Background Questionna!re

Subject #

Col.

1-2

BACKGROUND INFORMATION

Age:
Years Months

What is your class standing? (check one)

1. Freshman
2. Sophomore
3. ___ Junior
4. Senior
5. Master's level graduate student
6. Ph.D. level graduate student

Whais_urrrajo_.

What is your area of specializationor emphasis (e.g., robotics,

Do you have a driver's license? (check one)

1. Yes
2. No

If you answered "Yes" to the previous question, how many years have
you had a driver's license?

Do you have a pilot's license? (check one)

1. Yes
2. No

If you answered "Yes" to the previous question, approximately how many
hours have you logged as pilot-in command or as co-pilot?

Do you play vid6o_ames that use a joystick or trackball? (check one)

1. Yes
2. No

If you answered "Yes" to the previous question, how many hours per month
(on the average) do you normally play?

Have you ever flown radio-controlled models (e.g., boats, airplanes, cars)?
(check one)

1. Yes

._: ........... - _: 4 0

4-7

9

11

13

15

17-18

20

22-25

27

29-31

33
|

i



2. NO

If you answered "Yes" to the previous question:
Approximatelyhow many hourshave you logged?
What type of controller did you use? (check one)

1, Joystick
2. Wheel
3. OUter-Reasemealy-

35-38
40

Have you ever run the Proto-Fiight ManipulatorArm (PFMA) with a
hand controller before? (check one)

1. Yes
2. No

If you answered "Yes" to the previous question:
Howlongagowasyourexpetence? Yearn
How many total hoursdid you spend runningthe PFMA?

Months

Have you ever used a hand controller likethe one shown to you? (check one)

1. Yes
2, No

If you answered "Yes" to the previous question:
Flowlongagowasyourexpedence?
Howmanytotalhourscidyouspendusingthe handcontroller?..
Forwhatpurposecidyou uselhehand_

42

44-48
50-53

55

Ye_s ,,. Months 57-61
63-66

68

..... THANK YOU!!! .....
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Appendix C-Cooper-Harper Rating Scale
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Appendix D-Post-Test Q.uestionnaire

Su_ect#._._.

POST-TEST QUESTIONNAIRE

Please answer the following questions as thoroughly as possible. If you require more space, use the back
of the page. If you have any questions, please ask one of the test conductors for assistance.

The questions ask you to consider not only the overall task, but also different parts of the task you
performed. The parts you are asked to consider are the Slewing and Fine Alignment task pads. Slewing
refers to such motions as moving the box from one location to another location. Fine Alignment refers to
such motions as placing the box in or removing it from the task panel. Slewing motions consist of larger,
less precise movements. Fine Alignment motions consist of smaller, more precise movements.

REFERENCE FRAME

World reference frame refers to the reference frame that was located above and behind the

manipulator arm.

End Effector reference frame refers to the reference frame that was located near the manipulator's
end effector.

Which reference

frame do you
prefer? Write
World or End
Effector in the

blanks provided.

Overall Slewing Fine Alignment

Task

How strongly is
your preference?
Use the following
numbers to indicate

level of preference:
0 = none

I = slight
2 = moderate
3 = strong
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Why do you

prefer this

reference frame?

Example responses:

"easy to use"

"felt natural"

"more controllable"

"more responsive"

IMPEDANCE

Which impedance

do you prefer?
Write Soft or Stiff

in the blanks

provided.

How strongly is

your preference?

Use the following
numbers to indicate

level of preference:
0 = none

1 = slight
2 = moderate

3 = strong

Why do you

prefer this

impedance?

Example responses:

"easy to use"

"felt natural"

"more controllable"

"more responsive"

Overall

Task

Slewing Fine Alignment
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TIME DELAY

Were the different time delays noticeable? (check one)

1. _.No

2. Yes

What type of strategy did you use to accommodate the time delay?

What difference did the time delay make interms of the way that you performed the task?

What could have been done to make it easier for you to perform the task withtime delay?

Please fill out the following matrices as best as you can.

Under the following combinations,which reference frame did you prefer for the overall task? (write World
or End Effector in each cell)

No Time Delay

Some Time Delay

MostTime Delay

Soft Impedance Stiff Impedance

Under the following combinations, which impedance did you prefer for the overall task?

(write Soft or Stiff in each cell)

No Time Delay

Some Time Delay

Most Time Delay

World Reference Frame End Effector Reference Frame
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Appendix E-Statistical Tables pe,r Dependent Variable(s)

P-values that are less than or equal to 0.05 have an asterisk * behind them.

Table E-1.

FACTOR

Between Subiects

Within Subiects
Reference Frame

Impedance
Time Delay

Pearson Chi-Square Table for TP #1 Insertion Success.

CHI-SQUARE
VALUE

18.96

1.48
3.05
4.62

p-
VALUE

0.062

0.224
0.081
0.100

Table E-2.

FACTOR CHI'SQUARE p-VALUE
VALUE

Between Subiects

WithinSubiects
Reference Frame

Impedance
Time Delay

Pearson Chi-Square Table for TP #2 Insertion Success.

1220

253
0.60
3.90

0.349

0.112
0.438
0.142
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Table E-3.

FACTOR

Between Subiects Effect
Duration

Cooper Harper

Within Subiects
Main Effects
Reference Frame

Duration

Cooper Harper
Impedance
Time Delay

Duration

Cooper Harper
Interaction Effects

Frame x Impedance
Frame x Delay
Impedance x Delay
Frame x Impedance x Delay

MANOVA Table for Task Duration and CH Rating.

PILLAI'S
TRACE VALUE

F
VALUE

0.918

0.649

0.389
0_55

57265
110.155

13.849
18.190

28.703
24.177

0.078
0.362
0251
0.574

VALUE

0.000'

0.000'
0.000"

0.009*

0.004"
0.002"
0.109
0.000"
0.000"
0.000"

0.695
0.471
0.684
0.151

Table E-4. MANOVA Table for RMS Force and Torque for ORU #1

Insertion.

FACTOR PILLAI'S F p-
TRACE VALUE VALUE VALUE

Between Subiects Effect
RMS Force

RMS Torque

Within Subiects
Main Effects
Reference Frame

Impedance
Time Delay

Interaction Effects

Frame x Impedance
Frame x Delay
Impedance x Delay
Frame x Impedance x Delay

0.910

0.041
0.332
0241

0.385
0.725
0268
0.405

62.451
12.855

0.001"
0.000"
0.009"

0.881
0298
0.854

0232
0.185
0.823
0.641
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FACTOR

Table E-5.

Insertion.

Between Subiects Effect
RMS Force "

RMS Torque

within Subiects
Main Effects
Reference Frame

Impedance
Time Delay

Interaction Effects

Frame x Impedance
Frame x Delay
Impedance x Delay
Frame x Impedance x Delay

MANOVA Table for RMS Force and Torque for ORU #2

P/LLAI'S
TRACE VALUE

0J392

0.541
0.337
0.831

0.194
0.392
0.531
0.721

F
VALUE

57.560
16.530

p-
VALUE

0.001"
0.000"
0.005*

0.097
0292
0.076

0.523
0.660
0.454
0.190
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